Rare Earth Elements and Actinides: Progress in Computational Science Applications (ACS Symposium) (Hardcover)

Rare Earth Elements and Actinides: Progress in Computational Science Applications (ACS Symposium) By Deborah A. Penchoff (Editor), Theresa L. Windus (Editor), Charles C. Peterson (Editor) Cover Image

Rare Earth Elements and Actinides: Progress in Computational Science Applications (ACS Symposium) (Hardcover)

$185.00


Not On Our Shelves—Ships in 1-5 Days
Advances and challenges in nuclear and radiochemistry

Rare earth elements (REEs) and actinides are critical to electronics, communication, military applications, and green energy systems. They also play a large role in nuclear waste challenges with critical national importance. Actinides are still among some of the least studied elements in the periodic table, due to their short half-lives and radioactivity, which demand expert facilities for research. Computational modeling greatly aids in understanding REEs and actinides; however, electronic structure modeling of these elements presents limitations. High Performance Computing (HPC) has had a direct impact not only on technical advances and access to information on a global scale but also on investigations of REEs and actinides. This work discusses recent advances in molecular and data driven modeling that are essential to the study of REEs and actinides, effects of computational science in nuclear and radiochemical applications, and advances and challenges in the exascale era of
supercomputing.
Dr. Deborah Penchoff is the Associate Director of the Innovative Computing Laboratory (ICL) at the University of Tennessee (UTK) and holds a faculty appointment in the UTK Department of Nuclear Engineering. She is a fellow of the Howard H. Baker Jr. Center for Public Policy and a cochair of the Diversity, Equity, and Inclusion Action Committee (DEIAC) in the UTK Department of Nuclear Engineering. Prior to these roles, she was a scientist at the Radiochemistry Center of Excellence and at the Institute for Nuclear Security, where she directed and managed the Scientific Fellows Program. She in an expert in applying high-performance computing (HPC) and data science for national security applications with focus on bonding and reactivity of Rare Earth Elements (REEs) and actinides. Her research focuses on computational science, including development of protocols for efficient utilization of HPC resources, data science, data analytics, machine learning, and molecular computational modeling.These have been applied across a wide range of interdisciplinary research fields, such as critical materials and shortage of REEs, radiotherapy for cancer treatment, predictive capabilities for epidemiology, selective separations, sequestration of uranium from seawater, radiochemistry, nuclear forensics, and nuclear waste.Dr. Penchoff obtained a PhD in Physical Chemistry with an Interdisciplinary Graduate Minor in Computational Sciences (IGMCS) at UTK while pursuing her research at the Oak Ridge National Laboratory and UTK Joint Institute for Computational Sciences (JICS). Dr. Penchoff is the chair of the Computational Science Applications for REEs and Actinides session and chair of the Data Science and Artificial Intelligence in Nuclear and Radiochemistry session in the American Chemical Society (ACS) Division of Nuclear Chemistry and Technology (ACS-NUCL). She is also the newly Elected Member-at-Large of the ACS-NUCL Executive Committee. Dr. Penchoff is also an XSEDE Campus Champion and a co-organizer of the Radiobioassay and Radiochemical Measurements Conference. While at UTK, Dr. Penchoff has been the recipient of multiple awards including a Faculty Service Award in the Department of Nuclear Engineering, an Outstanding Teaching Award from the ACS Student Affiliates, and an Outstanding Teaching Awardfrom the Department of Chemistry. Prior to her career in science, Dr. Penchoff was a financial analyst at IBM. Dr. Theresa Windus is a Distinguished Professor and Liberal Arts and Sciences Dean's Professor in the Department of Chemistry at Iowa State University and a scientist at the Department of Energy's Ames Laboratory where she is a member of the Critical Materials Institute. She is also a Co-Director and Deputy Director for the Molecular Sciences Software Institute (MolSSI), the Director for the DOE NWChemEx Exascale Computing Project, and a former Co-Chair for the DOE Review of Exascale Computational and Data Requirements for Basic Energy Sciences. Prior to her position at Iowa State University, Dr. Windus was a Senior Scientist and Technical Group Lead at Pacific Northwest National Laboratory (PNNL) where she led a multidisciplinary team focusing on enabling computational resources for users at PNNL. There she also served as the technical group lead for the Molecular Sciences Software Group and led the development of NWChem - a leading worldwide software. Dr. Windus' current researchinterests are rare earth and heavy element chemistry, catalysis, aerosol formation, cellulose degradation, photochemistry, and design and development of efficient and novel massively parallel chemistry algorithms. She is an elected Councilor for the PHYS division of the American Chemical Society (ACS), serves on the Chemists with Disabilities Committee (ACS), is a Fellow of the ACS and of the American Association for the Advancement of Science, and has won multiple awards for her teaching and research. Dr. Charles Peterson is a scientist and HPC administrator at the Office of Advance Research Computing at the University of California, Los Angeles (UCLA). In this role, he enables computational research through consulting and collaboration in addition to training faculty, staff, and students to utilize UCLA's advance computing capabilities. Dr. Peterson is also an interdisciplinary researcher, collaborator and information technology professional with expertise in scientific computing and computational research applications across physics, chemistry, and material science. Prior to his work at UCLA, Dr. Peterson was instrumental in creating an advanced high-performance computing (HPC) network that enhanced research for many scientific groups at the North Texas Scientific Computing Center located at the University of North Texas (UNT). He is an active researcher in the development of computational methods for modeling and simulation of chemical properties of lanthanide and actinidecontaining compounds. His collaborations with the Institute for Nuclear Security and the Howard H. Baker Jr. Center for Public Policy led to research development in thermochemical and spectroscopic properties of heavy element systems for nuclear forensics, separation chemistry, and other applications in national security.
Product Details ISBN: 9780841298255
ISBN-10: 0841298254
Publisher: American Chemical Society
Publication Date: September 20th, 2022
Pages: 408
Language: English
Series: ACS Symposium